

SDN Firewall with POX

Table of Contents

SDN Firewall with POX Project ... 0

Part 0: Project References .. 1

Part 1: Files Layout ... 1

Part 2: Before We Begin ... 2

Part 3: Review of Mininet ... 2

Part 4: Wireshark ... 4

Part 5: SDN Firewall Implementation Details ... 6

Part 5a: Specifications of configure.pol ... 6

Part 5b: Implementing the Firewall in Code .. 9

Part 6: Configuration Rules ... 10

Appendix A: How to Test Host Connectivity ... 12

Part A: How to Test Manually .. 12

Part B: Automated Testing Suite .. 15

Appendix B: POX API Excerpt .. 17

Flow Modification Object ... 17

Match Structure ... 17

OpenFlow Actions .. 19

Example: Sending a FlowMod Object .. 20

SDN Firewall with POX Project

In this project, we will use Software Defined Networking (SDN) principles to create a configurable firewall using

an OpenFlow enabled Switch. The Software Defined Networking (OpenFlow) functionality allows we to

programmatically control the flow of traffic on the network.

This project has three phrases as follows:

1. Mininet Tutorial – This phase is a brief overview of Mininet.

1

2. Wireshark Tutorial – This phase is a brief introduction to packet capture using Wireshark/tshark. We will

examine the packet format for various traffic to learn of the different header values used in Phase 3.

3. SDN Firewall – This phase involves completing code to build a simple traffic blocking firewall using

OpenFlow with the POX Controller based on rules passed to it from a configuration file. In addition, we

will create a set of rules to test the firewall implementation.

Part 0: Project References

We will find the following resources useful in completing this project. It is recommended that we review these

resources before starting the project.

• IP Header Format - https://erg.abdn.ac.uk/users/gorry/course/inet-pages/ip-packet.html

• TCP Packet Header Format - https://en.wikipedia.org/wiki/Transmission_Control_Protocol

• UDP Packet Header Format - https://en.wikipedia.org/wiki/User_Datagram_Protocol

• The ICMP Protocol - https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol

• IP Protocols - https://en.wikipedia.org/wiki/List_of_IP_protocol_numbers

• TCP and UDP Service and Port References -

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

• Wireshark - https://www.wireshark.org/docs/wsug_html/

• CIDR Calculator - https://account.arin.net/public/cidrCalculator

• CIDR - https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

Part 1: Files Layout

• cleanup.sh – this file called by using following command line: ./cleanup.sh

This file will clean up the Mininet Environment and kill all zombie Python and POX processes.

• sdn-topology.py – this file creates the Mininet topology used in this assignment. This is like what we

created in the Simulating Networks project. When evaluating the code against the ruleset specified in

this project, do not change it. However, we are encouraged to make the own topologies (and rules) to

test the firewall. Look at the start-topology.sh file to see how to start a different topology.

• ws-topology.py – this file is substantially like sdn-topology, but it does not call the POX Controller. We will

use this during the Wireshark exercise.

• setup-firewall.py – this file sets up the frameworks used in this project. This file will create the

appropriate POX framework and then integrates the rules implemented in sdnfirewall.py into the

OpenFlow engine. It will also read in the values from the configure.pol file and validate that the entries

are valid. If we make changes to this file, the autograder will likely have issues with the final code as the

autograder uses the unaltered distribution version of this file.

• start-firewall.sh – this is the shell script that starts the firewall. This file must be started before the

topology is started. It will copy files to the appropriate directory and then start the POX OpenFlow

controller. This file is called by using following command line: ./start-firewall.sh

https://erg.abdn.ac.uk/users/gorry/course/inet-pages/ip-packet.html
https://erg.abdn.ac.uk/users/gorry/course/inet-pages/ip-packet.html
https://erg.abdn.ac.uk/users/gorry/course/inet-pages/ip-packet.html
https://erg.abdn.ac.uk/users/gorry/course/inet-pages/ip-packet.html
https://erg.abdn.ac.uk/users/gorry/course/inet-pages/ip-packet.html
https://erg.abdn.ac.uk/users/gorry/course/inet-pages/ip-packet.html
https://erg.abdn.ac.uk/users/gorry/course/inet-pages/ip-packet.html
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
https://en.wikipedia.org/wiki/Internet_Control_Message_Protocol
https://en.wikipedia.org/wiki/List_of_IP_protocol_numbers
https://en.wikipedia.org/wiki/List_of_IP_protocol_numbers
https://en.wikipedia.org/wiki/List_of_IP_protocol_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://www.wireshark.org/docs/wsug_html/
https://www.wireshark.org/docs/wsug_html/
https://www.wireshark.org/docs/wsug_html/
https://account.arin.net/public/cidrCalculator
https://account.arin.net/public/cidrCalculator
https://account.arin.net/public/cidrCalculator
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

2

• start-topology.sh – this is the shell script that starts the Mininet topology used in the assignment. All it

does is call the sdn-topology.py file with superuser permissions. This file is called by using following

command line: ./start-topology.sh

• test-client.py – this is a python test client program used to test the firewall. This file is called using the

following command line: python test-client.py PROTO SERVERIP PORT SOURCEPORT where PROTO is

either T for TCP, U for UDP, or G for GRE, SERVERIP is the IP address of the server (destination), PORT is

the destination port, and optionally SOURCEPORT allows we to configure the source port that we are

using. Example: python test-client.py T 10.0.1.1 80

• test-server.py – this is a python test server program used to test the firewall. This file is called using the

following command line: python test-server.py PROTO SERVERIP PORT where PROTO is either T for TCP,

U for UDP, G for GRE, SERVERIP is the IP address of the server (the server we are running this script on),

and PORT is the service port.

Example: python test-server.py T 10.0.1.1 80

• test-suite – This is a student developed test script that was developed in 2021 that can be used to test

the implementation AFTER WE FINISH BOTH THE IMPLEMENTATION FILES. The test cases in the main

folder will be used to evaluate the implementations for the first run. An alternate configuration and

topology will also be used to evaluate the implementations. This will be similar to, but not identical to

what is found in the extra sub-folder. See Appendix A for information on how to use the test suite.

Part 2: Before We Begin

This project assumes basic knowledge about IP and TCP/UDP Protocols. It is highly encouraged that we review

the following items before starting. This will help we in understanding the contents of IP packet headers and

what we may need to match.

o What is the IP (Internet Protocol)? What are the different types of Network Layer protocols? o Review

TCP and UDP? How does TCP or UDP differ from IP?

o Examine the packet header for a generic IP protocol entry. Contrast that with the packet header for a TCP

packet, and for a UDP packet. What are the differences? What does each field mean?

o What constitutes a TCP Connection? How does this contrast with a UDP connection.

o A special IP protocol is ICMP. Why is ICMP important? What behavior happens when we do an ICMP

Ping? If we block an ICMP response, what would we expect to see?

o If we block a host from ICMP, will we be able to send TCP/UDP traffic to it? o Can we explain what

happens if we get a ICMP Destination Unreachable response? o What is CIDR notation? How do we

subnet a network? o What IP Protocols use Source or Destination Ports?

Part 3: Review of Mininet

Mininet is a network simulator that allows we to explore SDN techniques by allowing we to create a network

topology including virtual switches, links, hosts/nodes, and controllers. It will also allow we to set the parameters

for each of these virtual devices and will allow we to simulate real-world applications on the different

hosts/nodes.

The following code sets up a basic Mininet topology similar to what is used for this project:

3

#!/usr/bin/python

from mininet.topo import Topo from
mininet.net import Mininet
from mininet.node import CPULimitedHost, RemoteController
from mininet.util import custom from mininet.link import
TCLink from mininet.cli import CLI
 class FirewallTopo(Topo): def __init__(self, cpu=.1,
bw=10, delay=None, **params):
super(FirewallTopo,self).__init__()

 # Host in link configuration
hconfig = {'cpu': cpu}
 lconfig = {'bw': bw, 'delay': delay}

 # Create the firewall switch
s1 = self.addSwitch('s1')

 hq1 = self.addHost('hq1',ip='10.0.0.1',mac='00:00:00:00:00:1e', **hconfig)
self.addLink(s1,hq1)

 us1 = self.addHost('us1', ip='10.0.1.1', mac='00:00:00:01:00:1e', **hconfig)
self.addLink(s1,us1)

This code defines the following virtual objects:

• Switch s1 – this is a single virtual switch with the label ‘s1’. In Mininet, we may have as many virtual ports

as we need – for Mininet, “ports” are considered to be a virtual ethernet jack, not an application port

that we would use in building the firewall.

• Hosts hq1 and us1 – these are individual virtual hosts that we can access via xterm and other means. We

can define the IP Address, MAC/Hardware Addresses, and configuration parameters that can define cpu

speed and other parameters using the hconfig dictionary.

• Links between s1 and hq1 and s1 and us1 – consider these like an ethernet cable that we would run

between a computer and the switch port. We can define individual port numbers on each side (i.e., port

on the host and port on the virtual switch), but it is advised to let Mininet automatically wire the

network. Like hosts, we can define configuration parameters to set link speed, bandwidth, and latency.

Useful Mininet Commands:

• For this project, we can start Mininet and load the firewall topology by running the ./start-topology.sh

from the project directory. We can quit Mininet by typing in the exit command.

• After we are done running Mininet, it is recommended that we cleanup Mininet. There are two ways of

doing this. The first is to run the sudo mn -c command from the terminal and the second is to use

the ./cleanup.sh script provided in the project directory. Do this after every run to minimize any

problems that might hang or crash Mininet.

• We can use the xterm command to start an xterm window for one of the virtual hosts. This command is

run from the mininet> prompt. For example, we can type in us1 xterm & to open a xterm window for the

virtual host us1. The & causes the window to open and run in the background. In this project, we will run

the test-*-client.py and test-*-server.py in each host to test connectivity.

4

• The pingall command that is run from the mininet> prompt will cause all hosts to ping all other hosts.

Note that this may take a long time. To run a ping between two hosts, we can specify host1 ping host2

(for example, us1 ping hq1 which will show the result of host us1 pinging hq1).

• The help command will show all Mininet commands and dump will show information about all hosts in

the topology.

Part 4: Wireshark

Wireshark is a network packet capture program that will allow we to capture a stream of network packets and

examine them. Wireshark is used extensively to troubleshoot computer networks and in the field of information

security. We will be using Wireshark to examine the packet headers to learn how to use this information to

match traffic that will be affected by the firewall we are constructing.

tshark is a command line version of Wireshark that we will be using to capture the packets between mininet

hosts and we will use Wireshark for the GUI to examine these packets. However, we will be allowed to use the

Wireshark GUI if we would like in doing the packet capture.

Please watch the video referenced in Part 2 if we would like to follow along in time for a live packet capture.

• Step 1: Open up a Terminal Window and change directory to the SDNFirewall directory that was

extracted in Part 1.

• Step 2: The first action is to start up the Mininet topology used for the Wireshark capture exercise. This

topology matches the topology that we will be using when creating and testing the firewall. To start this

topology, run the following command:

sudo python ws-topology.py

This will startup a Mininet session with all hosts created.

• Step 3: Start up two xterm windows for hosts us1 and us2. After we start each xterm window, it is

recommended that we run the following command in each xterm window as we load them to avoid

confusion about which xterm belongs to which host:

export PS1=”hostname >” replacing hostname with the actual hostname.

Type in the following commands at the Mininet prompt.

in the xterm window that pops

up) in the second xterm

window)

• Step 4: In this step, we want to start capturing all the traffic that traverses through the ethernet port on

host us1. We do this by running tshark (or alternatively, wireshark) as follows from the mininet prompt:

us1 xterm & (then run

 (likewise, run

export PS1=”us1 >”

us2 xterm & export PS1=”us2 >”

5

us1 sudo tshark -w /tmp/packetcapture.pcap

This will start tshark and will output a pcap formatted file to /tmp/capture.pcap. Note that this file is

created as root, so we will need to change ownership to mininet to use it in future steps – chown

mininet:mininet /tmp/packetcapture.pcap

If we wish to use the Wireshark GUI instead of tshark, we would call us1 sudo wireshark &. We may

use this method, but the TA staff will not provide support for any issues that may occur.

 • Step 5: Now we need to capture some traffic. Do the following tasks in the appropriate xterm window:

in us1 xterm: ping 10.0.1.2 (hit control C after a few ping requests)

In us2 xterm: ping 10.0.1.1 (likewise hit control C after a few ping requests)

In us1 xterm: python test-server.py T 10.0.1.1 80

In us2 xterm: python test-client.py T 10.0.1.1 80

After the connection completes, in the us1 xterm, press Control-C to kill theserver.

In us1 xterm: python test-server.py U 10.0.1.1 8000 In us2 xterm: python test-client.py U 10.0.1.1

8000

In us1 xterm: press Control C to kill the server

In Mininet Terminal: press Control C to stop tshark

• Step 6: At the mininet prompt, type in exit and press enter. Next, do the chown command as described

in step 4 above to the packet capture. We may also close the two xterm windows as they are finished.

Copy the /tmp/packetcapture.pcap to the project directory. This file is the deliverable for this phase of

the project.

• Step 7: At the bash prompt on the main terminal, run:

sudo wireshark

Go to the File => Open menu item, browse to the /tmp directory and select the pcap file that we saved

using tshark.

We will get a GUI that looks like the example packet capture. We will have a numbered list of all the captured

packets with brief information consisting of source/destination, IP protocol, and a description of the packet. We

can click on an individual packet and will get full details including the Layer 2 and Layer 3 packet headers,

TCP/UDP/ICMP parameters for packets using those IP protocols, and the data contained in the packet.

Example Packet Capture – Host us1 making web request to Host us2

6

Note the highlighted fields. We will be using the information from these fields to help build the firewall

implementation and ruleset. Note the separate header information for TCP. This will also be the case for UDP

packets.

Also, examine the three-way handshake that is used for TCP. What do we expect to find for UDP? ICMP?

Example TCP Three-Way Handshake

Please examine the other packets that were captured to help we familiarize yourself with Wireshark.

Part 5: SDN Firewall Implementation Details

Using the information that we learned above in running Wireshark, we will be creating two files – one is a

firewall configuration file that will specify different header parameters to match in order to allow or block certain

traffic and the second is the implementation code to create OpenFlow Flow Modification objects that will create

the firewall using the parameters given in the firewall configuration file.

We may create temporary rulesets to help we complete Part 5b below.

Part 5a: Specifications of configure.pol

The configure.pol file is used by the firewall implementation code to specify the rules that the firewall will use to

govern a connection. We do not need to code this first, but the format of the file is important as the

7

implementation code will need to use these items. The format of the file is a collection of lines that have the

proper format:

Rule Number, Action, Source MAC, Destination MAC, Source IP, Destination IP, Protocol, Source Port,

Destination Port, Comment/Note

o Rule Number = this is a rule number to help we track a particular rule - it is not used in the firewall

implementation. It can be of any value and is NOT validated in setup-firewall.py. The value need not be

unique and can be numeric or text.

o Action = Block or Allow Block rules will block traffic that matches the remaining parameters of this rule.

Allow rules will override Block rules to allow specific traffic to pass through the firewall (see below for an

example). The entry is a string in (Block,Allow).

o Source / Destination MAC address in form of xx:xx:xx:xx:xx:xx (example: 00:a2:c4:3f:11:09) or a “-“ if we

are not matching this item. We may use MAC Addresses to match an individual host. In the real world,

we would use it to match a particular piece of hardware. The MAC address of a particular host is defined

inside the sdn-topology.py file.

o Source / Destination IP Network Address in form of xxx.xxx.xxx.xxx/xx in CIDR notation or a “-“ if we are

not matching this item.. We can use this to match either a single IP Address (using it’s IP address and a

subnet mask of /32, or a particular Subnet. An entry here would look like: 10.0.0.1/32.

The IP address of a particular host is defined inside the sdn-topology.py file.

o Protocol = integer IP protocol number per IANA (0-254) or a “-“ if we are not matching this item.. An

example is ICMP is IP Protocol 1, TCP is IP Protocol 6, etc. This must be an integer.

o Source / Destination Port = if Protocol is TCP or UDP, this is the Application Port Number per IANA. For

example, web traffic is generally TCP Port 80. Do not try to use port numbers to differentiate the different

elements of the ICMP protocol. If we are not matching this item or are using an IP Protocol other than

TCP or UDP, this field should be a “-“.

o Comment/Note = this is for the use in tracking rules.

Special Notes About Firewall Configurations:

o Any field not being used for a match should have a '-' character as its entry. A ‘-‘ means that the item is

not being used for matching traffic. It is valid for any rule element except for Action to have a ‘-‘. (i.e., a

rule like: 1,Block,-,-,-,-,-,-,-,Block the world is valid, but not a rule that will be tested). HINT: Do not use

any item that has a “-“ in its field as an element that we will match. If we pass a “-“ to a field in a

match rule, we will cause POX to crash and the firewall will not work.

A “-“ is valid for ALL FIELDS except Action DO NOT PASS A “-“ INTO ONE OF THE OPENFLOW MATCH

VARIABLES OR THE CODE WILL CRASH..

8

o When a rule states to block the world from accessing a particular host, this means that we are

matching against all possible hosts which may include hosts that are not in the topology. HINT: Think

about how we would match arbitrary traffic from anywhere on the network. Don’t overthink this.

Also, due to restrictions placed on the implementation by POX, please do not use 0.0.0.0/0 as an

address for “world”. In a real-world situation, this address would be valid as addressing any host on

the internet.

o Note that a rule does not necessarily need a MAC or IP Address. Also, it is possible to have a rule that

only has network addresses and no ports/protocols. What won’t ever be tested is using a src/dst port

WITHOUT an IP Protocol.

o What is the difference between source and destination? Source makes a request of the destination. For

ports, we will most often use destination ports, but make sure that the firewall implements both source

and destination ports. For IP and MAC addresses, we will use both most of the time.

o When should I use MAC vs IP Addresses? We will want to interchange them in this file to test the

robustness of the implementation. It is valid to specify a Source MAC address and a Destination IP

Address.

Example Rules (included in the project files:

1,Block,-,-,10.0.0.1/32,10.0.1.0/24,6,-,80,Block 10.0.0.1 host from accessing a web server on the 10.0.1.0/24 network

2,Allow,-,-,10.0.0.1/32,10.0.1.125/32,6,-,80,Allow 10.0.0.1 host to access a web server on 10.0.1.125 overriding rule

What do these rules do?

The first rule basically blocks host hq1 (IP Address 10.0.0.1/32) from accessing a web server on any host on the

us network (the subnet 10.0.1.0/24 network). The web server is running on the TCP IP Protocol (6) and uses TCP

Port 80.

The second rule overrides the initial rule to allow hq1 (IP Address 10.0.0.1/32) to access a web server running on

us5 (IP Address 10.0.1.125/32)

By definition – from the sdn-topology.py file:

This class defines the Mininet Topology for the network used in this project. This
network consists of the following hosts/networks:

 Headquarters Network (hq1-hq5). Subnet 10.0.0.0/24

 US Network (us1-us5). Subnet 10.0.1.0/24

 India Network (in1-in5). Subnet 10.0.20.0/24

 China Network (cn1-cn5). Subnet 10.0.30.0/24

 UK Network (uk1-uk5). Subnet 10.0.40.0/24

9

In Part 6, we will be given a set of firewall conditions that we will need to create the configure.pol needed for the

submission.

We may create temporary rulesets to help we complete Part 5b below.

Part 5b: Implementing the Firewall in Code

After reviewing the format of the configure.pol file, we will now code a generic implementation of a firewall that

will use the values provided from the configuration file (passed to we as dictionary items). As it is provided, the

firewall implementation code blocks no traffic. We must implement code that does the following:

o Create an OpenFlow Flow Modification object o Create a POX Packet Matching object that will

integrate the elements from a single entry in the firewall configuration rule file (which is

passed in the policy dictionary) to match the different IP and TCP/UDP headers if there is

anything to match (i.e., no “-“ should be passed to the match object, nor should None be

passed to a match object if a “-“ is provided).

o Create a POX Output Action, if needed, to specify what to do with the traffic.

Please reference code examples in Appendix C, or we may refer to the POX API documentation

(WARNING, this is long and the API is confusing).

We will need to rewrite the rule = None to reference the Flow Modification object.

The code will go into a section that will repeat itself for every line in the firewall configuration file that is passed

to it. The “rule” item that is added to the “rules” list is an OpenFlow Modification object. The process of injecting

this rule into the POX controller is handled automatically for we in the start-firewall.py file.

TIP: If the implementation code segment is more than 25-30 lines, we are making it too difficult. The POX API

can provide many features that are not used in this project. The Appendix provides all of the information that we

will need to code the project.

Key Information:
o policies is a python list that contains one entry for each rule line contained in the configure.pol file. Each

individual line of the configure.pol file is represented as a dictionary object named policy. This dictionary

has the following keys:

o policy[‘mac-src’] = Source MAC Address (00:00:00:00:00:00) or “-“ o policy[‘mac-dst’] = Destination

MAC Address (00:00:00:00:00:00)) or “-“ o policy[‘ip-src’] = Source IP Address (10.0.1.1/32) in CIDR

notation) or “-“ o policy[‘ip-dst’] = Destination IP Address (10.0.1.1/32)) or “-“ o policy[‘ipprotocol’] =

IP Protocol (6 for TCP)) or “-“ o policy[‘port-src’] = Source Port for TCP/UDP (12000)) or “-“ o

policy[‘port-dst’] = Destination Port for TCP/UDP (80)) or “-“

o policy[‘rulenum’] = Rule Number (1) o policy[‘comment’] = Comment (Example Rule) o policy[‘action’]

= Allow or Block

Use these to match traffic. Please note that all fields are strings and may contain a ‘-‘ character. We may

either use policy[‘ip-dst’] or the split policy[‘ip-dst-address’]/[policy[‘ip-dst-subnet’] in the

10

implementation (the split was requested by prior semesters), but realize that if we use the ip-dstaddress

and ip-dst-subnet, we will need to carefully check the implementation to ensure that it is blocking the

addresses we intend to block.

o We will need to assume that all traffic is IPV4. It is acceptable to hardcode this value. Do not hardcode

other values. The code should be generic enough to handle any possible configuration.

o Hints: o The difference between an Allow or a Block is dependent on an Action and the Priority.

o We don’t necessarily need an action. See Appendix C for a discussion of what happens to a packet after

it is matched.

o There should be two priorities – one for ALLOW and one for BLOCK. Separate them sufficiently to

override any exact matching behavior that the POX controller implements). It is suggested one priority

be 0 or 1 and the other one above 10000. The reasoning for this is discussed in Appendix C.

o Outputting extra print debug lines will not adversely impact the autograder.

Part 6: Configuration Rules

We will need to submit a configure.pol file to create policies that implement the following scenarios. We may

implement the rules in any manner that we want, but it is recommended using this step as an opportunity to

check the firewall code implementation. The purpose of these rules is to test the firewall and to help determine

how traffic flows across the network (source vs destination, protocols, etc).

DO NOT block all traffic by default and only allow traffic specified. We will lose many points because the firewall

is open by default and only blocks the traffic that is specified.

We work for GT-SDN Corporation that has offices in the US, China, India, and the UK, with a US headquarters that

acts as the datacenter for the company. The task is to implement a firewall that accomplishes the following

goals:

• Task 1: On the headquarters network, we have two active DNS servers (using the newer

DNSover-TLS standard operating on TCP and UDP Port 853). hq1 provides DNS service to the

public (the world) and hq2 provides a private DNS service that should be accessible only to the

5 corporate networks (i.e., the US, China, India, UK, and Headquarters network). (DNS-over-TLS

is restricted to TCP and UDP Protocol 853 for the purpose of satisfying the ruleset for this

project)

Rule Objective: A connection from any host in the word should be able connect to hq1 on TCP
and UDP 853. However, only hosts on the US, China, India, UK, and HQ networks should be
able to connect to TCP and UDP 853 on host hq2. All other hosts should NOT be able to
connect to the DNS Server on host hq2.

11

• Task 2: On the headquarters network, the host hq3 acts as a VPN server that connects to each

of the other sites (hosts us3, uk3, in3, and cn3) using the OpenVPN server (standard ports –

using both TCP and UDP Ports 1194 will satisfy the requirements for this rule). Create a set of

firewall rules that will only allow the 4 offsite hosts (us3, uk3, in3, and cn3) access to the hq3

OpenVPN server. No other hosts in the world should be able to access the OpenVPN server on

hq3.

Rule Objective: Only hosts us3, uk3, in3, and cn3 should connect to TCP and UDP Port 1194 on
host HQ3. No other host should be able to connect to TCP and UDP 1194 on hq3.

• Task 3: Allow the hosts on the Headquarters network to be reachable via an ICMP ping from

the world (including from the us, uk, in, and cn networks). However, the us, uk, in, and cn

networks should not be reachable from the world (due to firewall implementation limitations,

the hq network would be able to ping the us, uk, in, and cn network. Why? What changes could

be made to the implementation requirements to allow this?)

Rule Objective: All hosts can receive a complete ping request/response to any HQ network

computers. Any hosts attempting to ping the US, UK, IN, and CN networks should NOT get a

complete ping request/response from these hosts EXCEPT for the HQ network. In order to

satisfy the first part of this rule, the HQ network must be able to ping the US, UK, IN, and CN

network.

• Task 4: One of the main routes for ransomware to enter a corporate network is through a

remote desktop connection with either an insecure version of a server protocol or via leaked or

weak credentials (using either the Microsoft Remote Desktop protocol or the Virtual

Networking Computing (VNC) protocols as the remote desktop server). For this task, write a set

of rules that will block the internet from connecting to a remote desktop server on the five

corporate networks. Allow the uk, us, in, and cn to connect to a remote desktop server on the

headquarters network. (Use TCP Port 3389 for Remote Desktop and TCP Port 5900 for VNC)

Rule Objective: Block any hosts outside of the corporate network (HQ, US, UK, IN, and CN)

from connecting to any hosts on corporate network on TCP ports 3389 and 5900). Computers

on the corporate network CAN connect to TCP ports 3389 and 5900 on the headquarters

network. Connections between the other corporate networks (cn1 to us1) are not defined

and can be set as desired.

We only need to block in the direction specified.

• Task 5: The servers located on hosts us3 and us4 run a micro webservice on TCP Port 8510 that

processes financial information. Access to this service should be blocked from hosts uk2, uk3,

uk4, uk5, in4, in5, us5, and hq5. (Hint: Note the IP Addresses for these hosts and we may use

the smallest subnet mask that handles the listed hosts using CIDR notation).

12

Rule Objective: This rule is designed to test using different CIDR notations to bracket hosts

together. Otherwise, the rule is to be interpreted as written. We do not need to use CIDR

notation to combine hosts, but it will result in many additional rules.

TIPS:

• Note that we only need to use an ALLOW rule to override a BLOCK rule. So if no block rule is

supplied, the ALLOW is not needed. This is important for Rule #1. We will definitely need to

use ALLOW rules for Rule #3.

• Note that if a rule specifies that TCP Port 8510 should be blocked, it does not mean that UDP

Port 8510 should be blocked. The autograder checks to ensure that connections are not being

overblocked.

Appendix A: How to Test Host Connectivity

Part A: How to Test Manually
When we are developing the implementation or troubleshooting a firewall rule, we will want to test by hand.

Unfortunately this process is a bit difficult.

1,Block,-,-,10.0.0.1/32,10.0.1.0/24,6,-,80,Block 10.0.0.1 from accessing a web server on the

10.0.1.0/32 network Startup Procedure:

SUMMER 2024 Important Note:

Please run the following code after setting up the project code. This will update POX to the latest version.

cd ~ git clone

https://github.com/noxrepo/pox.git cd pox

git checkout halosaur

o Step 1: Open two terminal windows or tabs on the VM and change to the SDNFirewall directory.

o Step 2: In the first terminal window, type in: ./start-firewall.sh configure.pol

If we get the following error, run chmod +x start-firewall.sh and chmod +x start-topology.sh

This should start up POX, read in the rules, and start up an OpenFlow Controller. We will see something

like this in the terminal window:

https://github.com/noxrepo/pox.git
https://github.com/noxrepo/pox.git

13

o Step 3: In the second terminal window, type in: ./start-topology.sh

This should start up mininet and load the topology. We should see the following:

This will start the firewall and set the topology. We do not need to repeat Steps 1-3 unless we are done

testing, need to restart the firewall, or need to restart mininet. When we are done with testing all of the

rules we intend to use, type in “quit” in the mininet window, close all of the extraneous xterm windows

generated, and run the mininet cleanup script ./cleanup.sh

How to test connectivity between two hosts:

o Step 1: To test the rule shown above, we want to use host us1 as server/destination and host hq1 as the

client. The rule we are testing involves the hq1 host attempting to connect to the web server port (TCP

Port 80) on host us1. At the mininet prompt, type in the following two commands on two different lines:

hq1 xterm & us1 xterm &

Two windows should have popped up. We can always identify which xterm is which by running the

command: ip address from the bash shell. This will give we the IP address for the xterm window, which

will then let we discover which xterm window belongs to which host.

o Step 2: In the xterm window for us1 (which is the destination host of the rule – remember that the

destination is always the server), type in the following command:

python test-server.py T 10.0.1.1 80

This sets up the test server for us1 that will be listening on TCP port 80. The IP Address specified is always

the IP address of the machine we are running it on. If we attempt to start the test-server on a machine

14

that does not have the IP address that is specified in the command, we will get the following error:

OSError: [Errno 99] Cannot assign requested address.

o Step 6: In the xterm window for hq1 (which is the source host of the rule – remember that the source is

always the client), type in the following command:

python test-client.py T 10.0.1.1 80

This will start up a client that will connect to the TCP Port 80 on the server 10.0.1.1 (destination IP

address) and will send a message string to the server. However, if the firewall is set to block this

connection, we will never see the message pass on either of the client or the server.

Examples of Connection Status:

• The two windows below depict a successful un-blocked connection between the client and the

server.

• A blocked connection will look like this (note that the client may take a while to timeout):

15

We may hit Control C to kill both the server and the client.

• A timed out connection is shown below. The difference between a timed-out connection on how the

connection was blocked or if it was blocked on a different side of the connection.

• If we get an error that says “No route to destination”, we have blocked the routing protocol. Ensure

that we do not have a Unspecified Prerequisite Error

Repeat this process for every rule we wish to test. If we feel that after some initial testing that the

implementation and ruleset is good, we may then proceed to using the automated test suite.

Part B: Automated Testing Suite
The automated Test Suit was developed by a student in Summer 2021 (htian66) and has been updated to match

the current version of this project. The Autograder works in a similar manner, but is instrumented differently to

grade. The Autograder will use the exact same test-cases to grade the configure.pol and sdn-firewall.py files, but

the alternate topology is similar, but not the same as the extra test cases.

How to test normal cases:

1. Change to the test-scripts directory

2. Copy the `sdn-firewall.py` and `configure.pol` into this directory.

3. Run `./start-firewall.sh configure.pol` as usual.

4. Open a new window, run `sudo python test_all.py`.

5. Total passed cases are calculated. Wrong cases will be displayed. For example, `2: us1 -> hq1 with U at 53,

should be True, current False` means the connection from client us1 to host hq1 using UDP at hq1 53 port is

failed, which should be successful. The first number is the index (0-based) of testcases.

Notes:

16

• One testcase in the `testcases.txt` file is given here: `us1 hq1 U 53 True` -> us1 client should be able

to access hq1 host with TCP protocol at port 80. Please pull request to fill the `testcases.txt` file.

• For goal 3, `P` is used in `testcaeses.txt` to represent `ping`.

• `test-server.py` and `test-client.py` are slighted modified from the original version to support `GRE`

protocol testing.

How to test extra cases:

1. Change to the test-scripts/extras directory

2. Copy the `sdn-firewall.py` into this directory (do NOT copy configure.pol as there are different rules and hosts

being used).

3. Run `./start-firewall.sh configure.pol` as usual.

4. Open a new window, run `sudo python test_all.py`.

5. Total passed cases are calculated. Wrong cases will be displayed. For example, `2: us1 -> hq1 with U at 53,

should be True, current False` means

Note that we can extend the extra test cases to test other scenarios like source ports and additional IP

Protocols. Feel free to post the topology, configure.pol, and testcases.txt file for these additional

scenarios.

17

Appendix B: POX API Excerpt

This section contains a highly modified excerpt from the POX Manual (modified to remove extraneous

features not used in this project and to provide clarifications). We should not need to use any other

POX objects for this project. TA Comments are highlighted. Everything on these pages is important to

complete the project.

Excerpted and modified from: https://noxrepo.github.io/pox-doc/html/

Object Definitions:

Flow Modification Object

The main object used for this project is a “Flow Modification” object. This adds a rule to the OpenFlow

controller that will affect a modification to the traffic flow based on priority, packet characteristic

matchin, and an action that will be done to the traffic that is matched. IF AN OBJECT is matched, it is

pulled from the network stream and will only be forwarded, modified, or redirected if we do an action.

If we do not specify an action and the packet is matched, the packet will basically be dropped.

The following class descriptor describes the contents of a flow modification object. We need to define

the match, priority, and actions for the object.

class ofp_flow_mod (ofp_header): def

__init__ (self, **kw):

ofp_header.__init__(self) self.header_type =

OFPT_FLOW_MOD self.match = ofp_match()

 self.priority = OFP_DEFAULT_PRIORITY

self.actions = []

Match Structure
OpenFlow defines a match structure – ofp_match – which enables we to define a set of headers for

packets to match against.

The match structure is defined in pox/OpenFlow/libOpenFlow_01.py in class ofp_match. Its attributes

are derived from the members listed in the OpenFlow specification, so refer to that for more

information, though they are summarized in the table below.

We should create a match object and attach it to the flow modification object.

Attribute Meaning

https://noxrepo.github.io/pox-doc/html/
https://noxrepo.github.io/pox-doc/html/
https://noxrepo.github.io/pox-doc/html/
https://noxrepo.github.io/pox-doc/html/
https://noxrepo.github.io/pox-doc/html/#id120
https://noxrepo.github.io/pox-doc/html/#id120

18

in_port

The Physical or virtual port on the switch that the packet arrived from. This is not an

application port – Think of this as the port in a switch where we plug in an ethernet cable.

Do we know where this is in the defined network?

dl_src Ethernet/MAC source address (Type of EthAddr)

dl_dst Ethernet/MAC destination address (Type of EthAddr)

dl_type Ethertype / length (e.g. 0x0800 = IPv4) (Type of Integer)

nw_proto IP protocol (e.g., 6 = TCP) or lower 8 bits of ARP opcode (Type of integer)

nw_src IP source address (Type of String or IPAddr)

nw_dst IP destination address (Type of String or IPAddr)

tp_src TCP/UDP source application port (Type of Integer)

tp_dst TCP/UDP destination application port (Type of Integer)

Attributes may be specified either on a match object or during its initialization. That is, the following are

equivalent:

matchobj = of.ofp_match(tp_src = 5, dl_dst = EthAddr("01:02:03:04:05:06"))

#.. or ..

matchobj = of.ofp_match() matchobj.tp_src
= 5
matchobj.dl_dst = EthAddr("01:02:03:04:05:06")

IP Address Handling

IP addresses can be specified in many different ways. When crafting the rule, we can set a network

address than can contain a subset of hosts on a particular network.

my_match.nw_src = "192.168.42.0/24"

my_match.nw_src = (IPAddr("192.168.42.0"), 24) # RECOMMEND TO NOT USE

IMPORTANT NOTE ABOUT IP ADDRESSES

TA Note: What isn’t very clear by this documentation is that nw_* is expecting a network address. If we
are calling out an IP Address like 10.0.1.1/32, it is an acceptable response to nw_*. However, if we are
calling out a subnet like 10.0.1.0/24, the IP address portion of the response MUST BE the Network
Address.

From Wikipedia: IP addresses are described as consisting of two groups of bits in the address: the most

significant bits are the network prefix, which identifies a whole network or subnet, and the least

https://noxrepo.github.io/pox-doc/html/#id121
https://noxrepo.github.io/pox-doc/html/#id121
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Most_significant_bit
https://en.wikipedia.org/wiki/Network_prefix
https://en.wikipedia.org/wiki/Network_prefix
https://en.wikipedia.org/wiki/Network_prefix
https://en.wikipedia.org/wiki/Subnetwork
https://en.wikipedia.org/wiki/Subnetwork
https://en.wikipedia.org/wiki/Subnetwork
https://en.wikipedia.org/wiki/Least_significant_bit
https://en.wikipedia.org/wiki/Least_significant_bit

19

significant set forms the host identifier, which specifies a particular interface of a host on that network.

This division is used as the basis of traffic routing between IP networks and for address allocation
policies. (https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing)

Thus for a /24 network, the first 24 bits of the address comprises the network address. Thus, it would
be 10.0.1.0. For a /25 network, there would be two networks in the 10.0.1.x space – a 10.0.1.0/25 and a
10.0.1.128/25.

The implementation code does NOT need to convert the given IP Address into a network – we can

assume that any given address in a possible configuration file must be valid. However, the configure.pol

file MUST be using the proper form if we are using a CIDR notation other than /32. Why would we do

this? To reduce the number of rules needed. We may use this for the 5th rule from Part

6.

Note that some fields have prerequisites. Basically this means that we can’t specify higher-layer fields

without specifying the corresponding lower-layer fields also. For example, we can not create a match

on a TCP port without also specifying that we wish to match TCP traffic. And in order to match TCP

traffic, we must specify that we wish to match IP traffic. Thus, a match with only tp_dst=80, for

example, is invalid. We must also specify nw_proto=6 (TCP), and dl_type=0x800 (IPv4). If we violate

this, we should get the warning message ‘Fields ignored due to unspecified prerequisites‘. For more

information on this subject, see the FAQ entry “I tried to install a table entry but got a different one.

Why?” as shown below:

FAQ Entry:

This question also presents itself as “What does the Fields ignored due to unspecified prerequisites
warning mean?”

Basically this means that we specified some higher-layer field without specifying the corresponding

lower-layer fields also. For example, we may have tried to create a match in which we specified only

tp_dst=80, intending to capture HTTP traffic. We can’t do this. To match TCP port 80, we must also

specify that we intend to match TCP (nw_proto=6). And in order to match on the TCP protocol, we

must also match on IPV4 type (dl_type=0x800).

OpenFlow Actions

The final aspect needed to fully implement a flow modification object is the action. With this, we

specify what we want done to a port. This can include forwarding, dropping, duplicating and

redirecting, or modify the header parameters. For the purposes of this project, we are only dealing

with forwarding of match traffic to its destination. But please note that for a Software Defined Network

system, we can do all sorts of actions including round robin server, DDOS blocking, and many other

possible options.

https://en.wikipedia.org/wiki/Least_significant_bit
https://en.wikipedia.org/wiki/Least_significant_bit
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://noxrepo.github.io/pox-doc/html/#id125
https://noxrepo.github.io/pox-doc/html/#id125
https://noxrepo.github.io/pox-doc/html/#id125
https://noxrepo.github.io/pox-doc/html/#id125

20

Output

Forward packets out of a physical or virtual port. Physical ports are referenced to by their integral value,

while virtual ports have symbolic names. Physical ports should have port numbers less than 0xFF00.

Structure definition:

class ofp_action_output (object):
def __init__ (self, **kw):
 self.port = None # Purposely bad -- require specification

port (int) the output port for this packet. Value could be an actual physical switch port number or one of the
following virtual ports expressed as constants:

• of.OFPP_IN_PORT - Send back out the physical switch port the packet was received on.
Except possibly OFPP_NORMAL, this is the only way to send a packet back out its incoming
port. (This redirects a packet back to the sender)

• of.OFPP_NORMAL - Process via normal L2/L3 legacy switch configuration (i.e., send traffic

to its destination without modification) – See https://study-ccna.com/layer-3-switch/ for

information on how normal L2/L3 legacy switches work.

• of.OFPP_FLOOD – output to all OpenFlow ports except the input port and those with

flooding disabled via the OFPPC_NO_FLOOD port config bit (generally, this is done for STP)

This is an option where the packet will be forwarded to all physical or virtual switch ports

except the source. This is not an ideal situation as it causes excessive traffic and could be

used to create a denial of service attack because of the packet amplification that it may

cause. (See DNS amplification attack for an example of the ramifications of this.

• of.OFPP_ALL - output all OpenFlow ports except the in port. This is similar to

OFPP_FLOOD, except it sends to ports that had flooding disable. This may cause even more

excessive traffic than OFPP_FLOOD

• of.OFPP_CONTROLLER - Send to the OpenFlow controller. This would send a packet to the

switch hardware itself, and not to a particular host system.

Example: Sending a FlowMod Object
The following example describes how to create a flow modification object including matching a

destination IP Address, IP Type, and Destination IP Port, and setting an action that would redirect the

matching packet out to physical switch port number 4 (note that we generally DO NO KNOW what

physical switch port to use.

rule = of.ofp_flow_mod()

https://noxrepo.github.io/pox-doc/html/#id126
https://noxrepo.github.io/pox-doc/html/#id126
https://study-ccna.com/layer-3-switch/
https://study-ccna.com/layer-3-switch/
https://study-ccna.com/layer-3-switch/
https://study-ccna.com/layer-3-switch/
https://study-ccna.com/layer-3-switch/
https://study-ccna.com/layer-3-switch/
https://study-ccna.com/layer-3-switch/
https://study-ccna.com/layer-3-switch/
https://noxrepo.github.io/pox-doc/html/#id134
https://noxrepo.github.io/pox-doc/html/#id134

21

Flow Modification Objects work as thus:

1. Packet enters the system and is examined by the Flow Modification Objects (1 for each rule in

the configuration ruleset)

2. The packet will then be examined to see if the different header items match the items specified

for that particular rule.

3. If the packet matches all of the applicable items, it is pulled from the stream for we to program

an action for it (forward it, readdress it, change it). If we don’t do an action for it, the package is

essentially dropped. If the packet does not match all of the applicable header items, it continues to the

next Flow Modification rule to test it. If it isn’t matched by any rules, it is passed on to the specific

destination.

For this project, we are making a flow modification object and action while using a matching pattern

that can match any or all of the different parameters of the header. Make the implementation generic.

rule.match = of.ofp_match()
rule . match . dl_type = 0x800
rule . match . nw_dst = "192.168.101.101 /32 "
rule.match.nw_proto = 6
rule . match . tp_dst = 80
rule . priority = 42
rule . actions . append (of . ofp_action_output (port = of.OFPP_CONTROLLER))

